论文标题
伽玛 - 跳跃操作员的强大恐怖性和波兰花圈产品的动作
Strong ergodicity for the Gamma-jump operator and for actions of Polish wreath products
论文作者
论文摘要
令$γ$和$δ$是足够不同的可计数组。我们表明,有一个轨道等价关系$ e $,是由波兰花圈产品组$γ\wrγ$的动作引起的,因此$ e $通常是$ f $ f $ ergodic,对于任何轨道等价$ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $δ\wrδ$。更普遍地,我们在$γ$ - 跳跃和迭代的$δ$跳跃之间建立了通用的千古,回答了克莱门斯和coskey的问题。证据遵循鲍尔同构和可定义的引脚之间的翻译。
Let $Γ$ and $Δ$ be sufficiently distinct countable groups. We show that there is an orbit equivalence relation $E$, induced by an action of the Polish wreath product group $Γ\wrΓ$, so that $E$ is generically $F$-ergodic for any orbit equivalence relation $F$ induced by an action of $Δ\wrΔ$. More generally, we establish generic ergodicity between $Γ$-jumps and the iterated $Δ$-jumps, answering a question of Clemens and Coskey. The proofs follow a translation between Borel homomorphisms and definable pins.