论文标题

在机器学习技术的帮助

Investigation of bi-particle states in gate-array-controlled quantum-dot systems aided by machine learning techniques

论文作者

Nemnes, G. A., Mitran, T. L., Preda, A. T., Ghiu, I., Marciu, M., Manolescu, A.

论文摘要

量子计算体系结构需要根据多电子状态进行准确有效的描述。最近的实现包括量子点阵列,其中多Q位系统的基态可以通过应用于顶部大门的电压更改。关于在由外部电压设置的多个操作条件下,关于多电子系统光谱的广泛研究通常需要相对较大的汉密尔顿对角线化,在这种情况下,以精确的方式考虑了库仑相互作用。我们没有使用高吞吐量计算进行详尽的计算,而是通过使用机器学习技术来增强数值对角来解决此问题,旨在预测许多电子特征值和特征功能。为此,我们采用并比较了线性回归方法的结果,例如多元最小二乘(MLS)以及基于内核脊回归(KRR),高斯过程回归(GPR)和人工神经网络(ANN)的非线性技术。输入特征向量来自随时可用的信息,该信息由库仑相互作用的电势和强度的二进制表示。此外,我们采用线性分类器,建立了一个用于检测单线 - 三个跃迁的规则,该跃迁可能会出现某些潜在配置。

Quantum computing architectures require an accurate and efficient description in terms of many-electron states. Recent implementations include quantum dot arrays, where the ground state of a multi q-bit system can be altered by voltages applied to the top gates. An extensive investigation concerning the spectra of the many-electron systems under multiple operation conditions set by external voltages typically requires a relatively large number of Hamiltonian diagonalizations, where the Coulomb interaction is considered in an exact manner. Instead of making exhaustive calculations using high throughput computing, we approach this problem by augmenting numerical diagonalizations with machine learning techniques designed to predict the many-electron eigenvalues and eigenfunctions. To this end, we employ and compare the results from linear regression methods such as multivariate least squares (MLS) as well as non-linear techniques based on kernel ridge regression (KRR), Gaussian process regression (GPR) and artificial neural networks (ANNs). The input feature vectors are assembled from readily available information comprised from a binary representation of the potential and the strength of the Coulomb interaction. Furthermore, employing a linear classifier, we establish a rule for detecting a singlet-triplet transition which may arise for certain potential configurations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源