论文标题

在零温度下(a)ds重力中的自发标量

Spontaneous scalarization in (A)dS gravity at zero temperature

论文作者

Marrani, Alessio, Miskovic, Olivera, Quezada, Paula

论文摘要

我们研究了$ d \ geq 4 $时空维度的电荷极端黑洞的自发标量。这种现象是由于标量的四分之一相互作用引起的对称性破坏引起的 - 希格斯的潜力和Stueckelberg与电磁和重力场的相互作用分别为耦合$ a $ a $ and $ b $。我们在地平线附近使用状态的熵表示,将逆吸引子机理应用于标量场,并使用热力学定律对系统的热力学稳定性进行分析。结果,我们获得标量场仅在渐变时凝聚在地平线上,这些空间是非flat,$λ\ neq 0 $(ds或ads),并且其极端黑色孔具有非平面范围$ k = \ pm 1 $,前提是规范质量$ m $ m $ m $ corde subers corne corne corne corne corne forne corne corne forne corne corne forne corne Indectal(scalar)的规定( $(λ,k)$。标量的过程描述了黑洞的二阶相变,从极端reissner-nordström(a)ds ds,到相应的极端毛茸茸的一个。此外,要进行过渡,相互作用必须足够强大,并且地平线上的所有物理量最多都取决于有效的Higgs-Stueckelberg互动$ AM^2-2b $。我们的大多数结果都是一般的,对任何参数和任何时空维度有效。

We study spontaneous scalarization of electrically charged extremal black holes in $D\geq 4$ spacetime dimensions. Such a phenomenon is caused by the symmetry breaking due to quartic interactions of the scalar -- Higgs potential and Stueckelberg interaction with electromagnetic and gravitational fields, characterized by the couplings $a$ and $b$, respectively. We use the entropy representation of the states in the vicinity of the horizon, apply the inverse attractor mechanism for the scalar field, and analyze analytically the thermodynamic stability of the system using the laws of thermodynamics. As a result, we obtain that the scalar field condensates on the horizon only in spacetimes which are asymptotically non-flat, $Λ\neq 0$ (dS or AdS), and whose extremal black holes have non-planar horizons $k=\pm 1$, provided that the mass $m$ of the scalar field belongs to a mass interval (area code) different for each set of the boundary conditions specified by $(Λ,k)$. A process of scalarization describes a second order phase transition of the black hole, from the extremal Reissner-Nordström (A)dS one, to the corresponding extremal hairy one. Furthermore, for the transition to happen, the interaction has to be strong enough, and all physical quantities on the horizon depend at most on the effective Higgs-Stueckelberg interaction $am^2-2b$. Most of our results are general, valid for any parameter and any spacetime dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源