论文标题
(Quasi-)双链代数上的calabi-yau结构
Calabi-Yau structures on (quasi-)bisymplectic algebras
论文作者
论文摘要
我们表明,正如Crawley-Boevey-boevey-etingof-Ginzburg(在加性案例中)和van den Bergh所引入的那样,在非交通矩图上的相对卡拉比 - YAU结构产生了(Quasi)双胶质结构。在一路上,我们证明了融合过程(a)对应于卡拉比奶油与“对裤”的组成,并且(b)保留了非脱位双质量 - 偏见结构与quasi-bisymplictic结构之间的偶性。作为一种应用,我们获得了Van den Bergh的泊松结构,该结构是在这些代数(DG-versions of)这些代数的2-喀拉比YAU结构(dg-versions)结构(dg-versions)上引起的变形乘乘积前代数的表示空间。
We show that relative Calabi--Yau structures on noncommutative moment maps give rise to (quasi-)bisymplectic structures, as introduced by Crawley-Boevey-Etingof-Ginzburg (in the additive case) and Van den Bergh (in the multiplicative case). We prove along the way that the fusion process (a) corresponds to the composition of Calabi-Yau cospans with "pair-of-pants" ones, and (b) preserves the duality between non-degenerate double quasi-Poisson structures and quasi-bisymplectic structures. As an application we obtain that Van den Bergh's Poisson structures on the moduli spaces of representations of deformed multiplicative preprojective algebras coincide with the ones induced by the 2-Calabi-Yau structures on (dg-versions of) these algebras.