论文标题

同时谎言代数的Whittaker类别

A Whittaker category for the Symplectic Lie algebra

论文作者

Li, Yang, Zhao, Jun, Zhang, Yuanyuan, Liu, Genqiang

论文摘要

对于任何$ n \ in \ mathbb {z} _ {\ geq 2} $,令$ \ mathfrak {m} _n $是$ \ mathfrak {sp} _ {sp} _ {2n} $ spand $ tyly long pange natund vectors $ x _ _ _ {-2n} $ x {-2m_i _i} $,一个$ \ mathfrak {sp} _ {2n} $ - 模块$ m $相对于Whittaker Pair $(\ Mathfrak {sp} _ {2n},\ Mathfrak {m Mathfrak {m} _n)$,如果$ \ m mathfrak的动作,则根据$ \ mathfrak $ \ rapra $ {m} $ n $ ntifity fin, Mazorchuk。这种模块比Kostant定义的经典Whittaker模块更一般。在本文中,我们表明,每个非单个块$ \ MATHCAL {WH} _ {\ MATHBF {a}}^μ$具有有限的尺寸whittaker vector子空间等同于模块类别$ \ Mathcal $ \ Mathcal {w} $ \ Mathcal {d} _n^{ev} $,是半简单的。作为推论,块中的任何简单模块{ $ \ mathfrak {sp} _ {2n} $。我们还从$ u(\ mathfrak {sp} _ {2n})$表征了所有可能的代数同态,以在自然条件下到Weyl代数$ \ Mathcal {D} _n $。

For any $n\in \mathbb{Z}_{\geq 2}$, let $\mathfrak{m}_n$ be the subalgebra of $\mathfrak{sp}_{2n}$ spanned by all long negative root vectors $X_{-2ε_i}$, $i=1,\dots,n$. An $\mathfrak{sp}_{2n}$-module $M$ is called a Whittaker module with respect to the Whittaker pair $(\mathfrak{sp}_{2n},\mathfrak{m}_n)$ if the action of $\mathfrak{m}_n$ on $M$ is locally finite, according to a definition of Batra and Mazorchuk. This kind of modules are more general than the classical Whittaker modules defined by Kostant. In this paper, we show that each non-singular block $\mathcal{WH}_{\mathbf{a}}^μ$ with finite dimensional Whittaker vector subspaces is equivalent to a module category $\mathcal{W}^{\mathbf{a}}$ of the even Weyl algebra $\mathcal{D}_n^{ev}$ which is semi-simple. As a corollary, any simple module in the block $\mathcal{WH}_{\mathbf{i}}^{-\frac{1}{2}ω_n}$ for the fundamental weight $ω_n$ is equivalent to the Nilsson's module $N_{\mathbf{i}}$ up to an automorphism of $\mathfrak{sp}_{2n}$. We also characterize all possible algebra homomorphisms from $U(\mathfrak{sp}_{2n})$ to the Weyl algebra $\mathcal{D}_n$ under a natural condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源