论文标题
在环形谐振器中进行反向传播的光的切换前部,高原和KERR振荡
Switching fronts, plateaus and Kerr oscillations of counterpropagating light in ring resonators
论文作者
论文摘要
我们表征了固定的前部和深色孤子子,用于在微型环和带有两个输入场的微型环和纤维谐振器中进行反向传播,即正常的分散和非本地耦合。这些特征与具有局部耦合的系统中的特征不同,因为它们的存在和稳定性是由于均匀解决方案的抵消区域的仔细平衡。当扫描两个空腔引导之一时,在一个反传播的田地之一中存在一个由两个前部隔开的稳定的溶液,而另一个领域的力量是同质的。两个前高原解决方案与独特的Maxwell Point的Lugiato-Lefever方程的解决方案有一对一的对应。通过定义有效的引导和发现前部的输入幂的固定值,我们确定麦克斯韦点和稳定前部的距离的表达式,作为引人入胜的函数和两个字段的输入幂与数值模拟良好一致。对于某些引人注目的值,我们发现了具有前部的多稳态状态,振荡均匀状态和反向传播领域的非振荡均匀状态。提供了与稳定的非均匀前溶液共存的这些异常动力学状态的鲁棒性和参数范围。
We characterise stationary fronts and dark solitons for counterpropagating waves in micro-ring and fibre resonators with two input fields, normal dispersion and nonlocal coupling. These features are different from those in systems with local coupling in that their existence and stability are due to a careful balance of the areas of offset from homogeneous solutions. When scanning one of the two cavity detunings, stable solutions formed plateaus separated by two fronts are present in one of the counter-propagating fields with the power of the other field being homogeneous. Two front plateau solutions have a one-to-one correspondence to solutions of a Lugiato-Lefever equation at the unique Maxwell point. By defining effective detunings and for fixed values of the input powers where the fronts are found, we determine expressions for both the Maxwell point and the distance of the stable fronts as functions of detunings and input powers of both fields in good agreement with numerical simulations. For certain values of the detunings we find multi-stable states of plateaus with fronts, oscillating homogeneous states and non-oscillating homogeneous states of the counter-propagating fields. Robustness and parameter ranges of these unusual dynamical states coexisting with stable non-homogeneous front solutions are provided.