论文标题

基于混合模型的深度接收器的在线元学习

Online Meta-Learning For Hybrid Model-Based Deep Receivers

论文作者

Raviv, Tomer, Park, Sangwoo, Simeone, Osvaldo, Eldar, Yonina C., Shlezinger, Nir

论文摘要

近年来,人们目睹了对深度神经网络(DNN)在接收器设计中的应用越来越多的兴趣,而无需依赖渠道模型的知识,可以在复杂的环境中应用。但是,通信渠道的动态性质通常会导致快速分布变化,这可能需要定期进行重新训练。本文制定了一种数据效率高的两阶段培训方法,可促进快速的在线适应。我们的培训机制使用预测性的学习方案,从与当前和过去的通道实现相对应的数据中迅速训练。我们的方法适用于基于任何深神经网络(DNN)的接收器,并且不需要传输新的试点数据进行培训。为了说明所提出的方法,我们研究了利用基于模型的架构的DNN辅助接收器,并基于预测性元学习介绍了模块化培训策略。我们在合成线性通道,合成非线性通道和成本2100通道上的模拟中演示了我们的技术。我们的结果表明,提出的在线培训计划允许接收器在迅速变化的情况下,基于自学和联合学习的表现,在编码的位错误率中,接收者的差距高达2.5 dB。

Recent years have witnessed growing interest in the application of deep neural networks (DNNs) for receiver design, which can potentially be applied in complex environments without relying on knowledge of the channel model. However, the dynamic nature of communication channels often leads to rapid distribution shifts, which may require periodically retraining. This paper formulates a data-efficient two-stage training method that facilitates rapid online adaptation. Our training mechanism uses a predictive meta-learning scheme to train rapidly from data corresponding to both current and past channel realizations. Our method is applicable to any deep neural network (DNN)-based receiver, and does not require transmission of new pilot data for training. To illustrate the proposed approach, we study DNN-aided receivers that utilize an interpretable model-based architecture, and introduce a modular training strategy based on predictive meta-learning. We demonstrate our techniques in simulations on a synthetic linear channel, a synthetic non-linear channel, and a COST 2100 channel. Our results demonstrate that the proposed online training scheme allows receivers to outperform previous techniques based on self-supervision and joint-learning by a margin of up to 2.5 dB in coded bit error rate in rapidly-varying scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源