论文标题
DeepXrd,一种用于预测材料组成XRD光谱的深度学习模型
DeepXRD, a Deep Learning Model for Predicting of XRD spectrum from Materials Composition
论文作者
论文摘要
材料科学中长期存在的问题之一是如何预测材料的结构,然后仅在其组成下进行特性。晶体结构的实验表征已被广泛用于结构测定,但是对于高通量筛选来说太昂贵了。同时,直接预测组成的晶体结构仍然是一个具有挑战性的未解决问题。本文中,我们提出了一种仅在材料组成的情况下预测XRD光谱的深度学习算法,然后可以将其用于推断下游结构分析的关键结构特征,例如晶体系统或空间组分类或晶体晶格参数的确定或材料属性预测。对两个数据集的基准研究表明,我们的DEEPXRD算法可以在我们的测试集中评估的XRD预测方面实现良好的性能。因此,它可以在巨大的材料组成空间中用于新材料发现中的高通量筛选。
One of the long-standing problems in materials science is how to predict a material's structure and then its properties given only its composition. Experimental characterization of crystal structures has been widely used for structure determination, which is however too expensive for high-throughput screening. At the same time, directly predicting crystal structures from compositions remains a challenging unsolved problem. Herein we propose a deep learning algorithm for predicting the XRD spectrum given only the composition of a material, which can then be used to infer key structural features for downstream structural analysis such as crystal system or space group classification or crystal lattice parameter determination or materials property predictions. Benchmark studies on two datasets show that our DeepXRD algorithm can achieve good performance for XRD prediction as evaluated over our test sets. It can thus be used in high-throughput screening in the huge materials composition space for new materials discovery.