论文标题
sublinear动态间隔调度(在一台或多台机器上)
Sublinear Dynamic Interval Scheduling (on one or multiple machines)
论文作者
论文摘要
我们重新审视动态设置中经典间隔计划的复杂性。在此问题中,目标是在插入和删除下保持一组间隔,并在每次更新后报告成对分离间隔的最大大小子集的大小。对于未加权和加权版本(Henzinger,Neumann,Wiese,SocG 2020),非平凡的近似算法以此问题而闻名。令人惊讶的是,尚不清楚一般的确切版本是否允许在均匀时间内使用的精确解决方案,也就是说,每次更新后都没有重新计算答案。 我们的第一个贡献是使用摊销$ \ tilde {\ Mathcal {o}}}}(n^{1/3})$更新时间的动态间隔调度的结构。然后,基于一台机器的想法,我们为任何恒定数量的机器设计了一个sublinear解决方案:我们描述了$ m \ geq 2 $机器的动态间隔时间表的结构,该结构带有摊销$ \ tilde {\ tilde {\ mathcal {o}}}}(n^{1-1/m})$更新时间。 我们通过考虑一台计算机上的动态加权间隔调度来补充上述结果,这正在维持成对分离间隔的最大权重子集(重量)。对于此问题的任何结构,我们显示了几乎线性的下限(以最小重量$ k $ -clique的硬度为条件)。因此,在加权情况下,确实应该寻求近似解决方案。
We revisit the complexity of the classical Interval Scheduling in the dynamic setting. In this problem, the goal is to maintain a set of intervals under insertions and deletions and report the size of the maximum size subset of pairwise disjoint intervals after each update. Nontrivial approximation algorithms are known for this problem, for both the unweighted and weighted versions [Henzinger, Neumann, Wiese, SoCG 2020]. Surprisingly, it was not known if the general exact version admits an exact solution working in sublinear time, that is, without recomputing the answer after each update. Our first contribution is a structure for Dynamic Interval Scheduling with amortized $\tilde{\mathcal{O}}(n^{1/3})$ update time. Then, building on the ideas used for the case of one machine, we design a sublinear solution for any constant number of machines: we describe a structure for Dynamic Interval Scheduling on $m\geq 2$ machines with amortized $\tilde{\mathcal{O}}(n^{1 - 1/m})$ update time. We complement the above results by considering Dynamic Weighted Interval Scheduling on one machine, that is maintaining (the weight of) the maximum weight subset of pairwise disjoint intervals. We show an almost linear lower bound (conditioned on the hardness of Minimum Weight $k$-Clique) for the update/query time of any structure for this problem. Hence, in the weighted case one should indeed seek approximate solutions.