论文标题

少量视频对象细分的时间the绕推断

Temporal Transductive Inference for Few-Shot Video Object Segmentation

论文作者

Siam, Mennatullah, Derpanis, Konstantinos G., Wildes, Richard P.

论文摘要

几个示波的视频对象细分(FS-VOS)旨在使用一些在初始培训期间看不见的标签示例对视频帧进行细分。在本文中,我们提出了一种简单但有效的时间跨性推理(TTI)方法,该方法在几次推理过程中利用了未标记的视频帧的时间一致性。我们方法的关键是使用全球和本地时间约束。全局约束的目的是学习整个图像序列的新颖类的一致线性分类器,而局部约束则在每个框架中强制执行前景/背景区域的比例,使其在本地时间窗口中保持一致。这些约束在转导推断期间充当时空正规化器,以增加时间连贯性并减少几杆支撑组的过度拟合。从经验上讲,我们的模型在YouTube-Vis上的联合相交方面优于最先进的元学习方法2.8%。此外,我们介绍了详尽标记的改进的基准(即所有对象出现的标签,与当前可用的情况不同),并提出了一个更现实的评估范式,该评估范式针对培训和测试集之间的数据分布变化。我们的经验结果和深入的分析证实了拟议时空正规化器的额外好处,以提高时间连贯性并克服某些过度拟合的情况。

Few-shot video object segmentation (FS-VOS) aims at segmenting video frames using a few labelled examples of classes not seen during initial training. In this paper, we present a simple but effective temporal transductive inference (TTI) approach that leverages temporal consistency in the unlabelled video frames during few-shot inference. Key to our approach is the use of both global and local temporal constraints. The objective of the global constraint is to learn consistent linear classifiers for novel classes across the image sequence, whereas the local constraint enforces the proportion of foreground/background regions in each frame to be coherent across a local temporal window. These constraints act as spatiotemporal regularizers during the transductive inference to increase temporal coherence and reduce overfitting on the few-shot support set. Empirically, our model outperforms state-of-the-art meta-learning approaches in terms of mean intersection over union on YouTube-VIS by 2.8%. In addition, we introduce improved benchmarks that are exhaustively labelled (i.e. all object occurrences are labelled, unlike the currently available), and present a more realistic evaluation paradigm that targets data distribution shift between training and testing sets. Our empirical results and in-depth analysis confirm the added benefits of the proposed spatiotemporal regularizers to improve temporal coherence and overcome certain overfitting scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源