论文标题

对抗表示共享:一个定量且安全的协作学习框架

Adversarial Representation Sharing: A Quantitative and Secure Collaborative Learning Framework

论文作者

Chen, Jikun, Qiang, Feng, Ruan, Na

论文摘要

深度学习模型的性能在很大程度上取决于培训数据的量。当今的数据持有人合并其数据集和培训模型是普遍的做法,这对数据隐私构成了威胁。与现有的方法(例如安全多方计算(MPC)和联合学习(FL))不同,我们发现表示形式学习在协作学习方面具有独特的优势,这是由于沟通开销较低和独立于任务。但是,数据表示面临模型反演攻击的威胁。在本文中,我们正式定义了协作学习方案,并量化数据实用性和隐私。然后,我们提出ARS,这是一个协作学习框架,其中用户共享数据表示以训练模型,并在针对重建或属性提取攻击的数据表示中添加不可察觉的对抗噪声。通过在不同情况下评估AR,我们证明了我们的机制有效地抵抗模型反演攻击,并在隐私与效用之间取得了平衡。 ARS框架具有广泛的适用性。首先,ARS对各种数据类型有效,而不仅限于图像。其次,用户共享的数据表示可以在不同的任务中使用。第三,可以轻松地将框架扩展到垂直数据分配方案。

The performance of deep learning models highly depends on the amount of training data. It is common practice for today's data holders to merge their datasets and train models collaboratively, which yet poses a threat to data privacy. Different from existing methods such as secure multi-party computation (MPC) and federated learning (FL), we find representation learning has unique advantages in collaborative learning due to the lower communication overhead and task-independency. However, data representations face the threat of model inversion attacks. In this article, we formally define the collaborative learning scenario, and quantify data utility and privacy. Then we present ARS, a collaborative learning framework wherein users share representations of data to train models, and add imperceptible adversarial noise to data representations against reconstruction or attribute extraction attacks. By evaluating ARS in different contexts, we demonstrate that our mechanism is effective against model inversion attacks, and achieves a balance between privacy and utility. The ARS framework has wide applicability. First, ARS is valid for various data types, not limited to images. Second, data representations shared by users can be utilized in different tasks. Third, the framework can be easily extended to the vertical data partitioning scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源