论文标题
“这是假新闻”:表征从Twitter用户到Covid-19的虚假信息的自发揭穿
"This is Fake News": Characterizing the Spontaneous Debunking from Twitter Users to COVID-19 False Information
论文作者
论文摘要
虚假信息在社交媒体上传播,事实检查是一种潜在的对策。但是,事实检查者严重缺乏。迫切需要一种有效的扩展事实检查的方法,尤其是在Covid-19等大流行中。在这项研究中,我们专注于社交媒体用户的自发揭穿,尽管它在事实检验和反驳虚假信息方面有用,但在现有研究中却遗失了。具体来说,我们用虚假信息或伪造的推文来表征这些推文,这些推文往往会被揭穿,而Twitter用户通常会揭穿伪造的推文。为了进行此分析,我们创建了一个对假推文的响应,注释其中的子集的综合数据集,并构建了用于检测揭穿行为的分类模型。我们发现,大多数假推文都没有被塑造,自发的揭穿比其他形式的回应要慢,并且自发揭穿政治主题的党派展示了党派。这些结果提供了可行的见解,可以利用自发揭穿来扩展传统的事实检查,从而从新的角度补充了现有的研究。
False information spreads on social media, and fact-checking is a potential countermeasure. However, there is a severe shortage of fact-checkers; an efficient way to scale fact-checking is desperately needed, especially in pandemics like COVID-19. In this study, we focus on spontaneous debunking by social media users, which has been missed in existing research despite its indicated usefulness for fact-checking and countering false information. Specifically, we characterize the tweets with false information, or fake tweets, that tend to be debunked and Twitter users who often debunk fake tweets. For this analysis, we create a comprehensive dataset of responses to fake tweets, annotate a subset of them, and build a classification model for detecting debunking behaviors. We find that most fake tweets are left undebunked, spontaneous debunking is slower than other forms of responses, and spontaneous debunking exhibits partisanship in political topics. These results provide actionable insights into utilizing spontaneous debunking to scale conventional fact-checking, thereby supplementing existing research from a new perspective.