论文标题
利用搜索历史来改善人事福利
Leveraging Search History for Improving Person-Job Fit
论文作者
论文摘要
作为在线招聘平台的核心技术,人job Fit可以通过将职位与合格的候选人准确匹配,可以提高招聘效率。但是,现有的研究主要集中于建议方案,同时忽略了将职位与求职者联系起来的另一个重要渠道,即搜索。直观地,搜索历史记录在求职中包含丰富的用户行为,反映了用户工作意图的重要证据。在本文中,我们提出了一种新颖的搜索历史增强的人与工作模型,称为SHPJF。为了利用来自作业/简历的文本内容和用户的搜索历史,我们提出了两个具有不同目的的组件。对于文本匹配组件,我们设计了一个基于BERT的文本编码器,用于捕获简历和作业描述之间的语义交互。对于意图建模组件,我们基于“点击序列”或“查询文本序列”设计了两种意图建模方法。为了捕获基本的工作意图,我们进一步提出了一种意图聚类技术,以识别和总结搜索日志的主要意图。大型现实招聘数据集的广泛实验证明了我们方法的有效性。
As the core technique of online recruitment platforms, person-job fit can improve hiring efficiency by accurately matching job positions with qualified candidates. However, existing studies mainly focus on the recommendation scenario, while neglecting another important channel for linking positions with job seekers, i.e. search. Intuitively, search history contains rich user behavior in job seeking, reflecting important evidence for job intention of users. In this paper, we present a novel Search History enhanced Person-Job Fit model, named as SHPJF. To utilize both text content from jobs/resumes and search histories from users, we propose two components with different purposes. For text matching component, we design a BERT-based text encoder for capturing the semantic interaction between resumes and job descriptions. For intention modeling component, we design two kinds of intention modeling approaches based on the Transformer architecture, either based on the click sequence or query text sequence. To capture underlying job intentions, we further propose an intention clustering technique to identify and summarize the major intentions from search logs. Extensive experiments on a large real-world recruitment dataset have demonstrated the effectiveness of our approach.