论文标题
一种新型的神经形态处理器实现了对投资组合管理的深入增强学习的实现
A Novel Neuromorphic Processors Realization of Spiking Deep Reinforcement Learning for Portfolio Management
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The process of continuously reallocating funds into financial assets, aiming to increase the expected return of investment and minimizing the risk, is known as portfolio management. Processing speed and energy consumption of portfolio management have become crucial as the complexity of their real-world applications increasingly involves high-dimensional observation and action spaces and environment uncertainty, which their limited onboard resources cannot offset. Emerging neuromorphic chips inspired by the human brain increase processing speed by up to 1000 times and reduce power consumption by several orders of magnitude. This paper proposes a spiking deep reinforcement learning (SDRL) algorithm that can predict financial markets based on unpredictable environments and achieve the defined portfolio management goal of profitability and risk reduction. This algorithm is optimized forIntel's Loihi neuromorphic processor and provides 186x and 516x energy consumption reduction is observed compared to the competitors, respectively. In addition, a 1.3x and 2.0x speed-up over the high-end processors and GPUs, respectively. The evaluations are performed on cryptocurrency market between 2016 and 2021 the benchmark.