论文标题
某些PICARD组计算中的同源方法
Homological methods in certain Picard group computations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $G$ be a connected complex semisimple Lie group, $Γ$ be a cocompact, irreducible and torsionless lattice in $G$ and $K$ be a maximal compact subgroup of $G$. Assume $Γ$ acts by left multiplication and $K$ acts by right multiplication on $G$. Let $M_Γ= Γ\backslash G$, $X=G/K$ and $X_Γ=Γ\backslash X$. In this article we prove that for any $n\geq0$, the composition $H^{n}(X_Γ,\mathbb{C})\rightarrow H^{n}(M_Γ,\mathbb{C})\rightarrow H^{n}(M_Γ,\mathcal{O}_{M_Γ})$ is an isomorphism. As an application when $G$ is simply connected, we compute the Picard group of $M_Γ$ for the cases rank($G$) $=1,2$. More precisely we show that if rank($G$) $=1$, $Pic(M_Γ)=(\mathbb{C}^{r}/\mathbb{Z}^{r})\oplus A$ and if rank($G$) $=2$, then $Pic(M_Γ)\cong A$ via the first Chern class map, where $A$ is the torsion subgroup of $H^{2}(M_Γ,\mathbb{Z})$ and $r$ is the rank of $Γ/[Γ,Γ]$.