论文标题

离子陷阱微芯片模块之间的高保真量子物质链接

A high-fidelity quantum matter-link between ion-trap microchip modules

论文作者

Akhtar, M., Bonus, F., Lebrun-Gallagher, F. R., Johnson, N. I., Siegele-Brown, M., Hong, S., Hile, S. J., Kulmiya, S. A., Weidt, S., Hensinger, W. K.

论文摘要

系统可伸缩性对于大型量子计算机(QC)至关重要,并且正在对各种硬件平台进行追求。对于基于被困离子的QC,使用量子电荷耦合设备(QCCD)等体系结构来扩展单个设备上的Qubits数量。但是,可以在单个量子计算模块上托管的离子数量受到使用的芯片大小的限制。因此,模块化方法至关重要,需要单个模块之间的量子连接。在这里,我们介绍了一个量子物质链接的演示,其中离子量子位在相邻的QC模块之间传递。相邻模块之间的离子传输以2424 $ \,$ s $^{ - 1} $的速度实现,并且在运输过程中与离子损失相关的不忠$ 7 \ times10^{ - 8} $。此外,我们表明链接不会可测量地影响量子的相位相干性。量子物质链接构成了QCCD设备互连的实用机制。我们的工作将促进能够实施能够容忍故障量表量子计算的模块化QC。

System scalability is fundamental for large-scale quantum computers (QCs) and is being pursued over a variety of hardware platforms. For QCs based on trapped ions, architectures such as the quantum charge-coupled device (QCCD) are used to scale the number of qubits on a single device. However, the number of ions that can be hosted on a single quantum computing module is limited by the size of the chip being used. Therefore, a modular approach is of critical importance and requires quantum connections between individual modules. Here, we present the demonstration of a quantum matter-link in which ion qubits are transferred between adjacent QC modules. Ion transport between adjacent modules is realised at a rate of 2424$\,$s$^{-1}$ and with an infidelity associated with ion loss during transport below $7\times10^{-8}$. Furthermore, we show that the link does not measurably impact the phase coherence of the qubit. The quantum matter-link constitutes a practical mechanism for the interconnection of QCCD devices. Our work will facilitate the implementation of modular QCs capable of fault-tolerant utility-scale quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源