论文标题
基于人群的fMRI分类的对比度学习
Contrastive Graph Learning for Population-based fMRI Classification
论文作者
论文摘要
对比性自我监督学习最近使fMRI分类受益于归纳偏见。它的弱标签依赖可阻止在小型医疗数据集上过度适应,并解决高层内差异。尽管如此,现有的对比方法仅在3D医学图像的像素级特征上生成相似的对,而揭示关键认知信息的功能连接性则不足。此外,现有方法可以预测单个对比度表示的标签,而不识别患者组中的相邻信息,而室内对比度可以作为适合基于人群的分类的相似性措施。我们在此提出了针对基于人群fMRI分类的对比功能连接图。功能连通图上的表示形式“驱除”了异质患者对的同时均匀对“互相吸引”。然后,将更新类似患者之间的连接的动态人群图进行分类。在多站点数据集ADHD200上进行的实验验证了所提出的方法对各种指标的优越性。我们最初可视化人口关系并利用潜在的亚型。
Contrastive self-supervised learning has recently benefited fMRI classification with inductive biases. Its weak label reliance prevents overfitting on small medical datasets and tackles the high intraclass variances. Nonetheless, existing contrastive methods generate resemblant pairs only on pixel-level features of 3D medical images, while the functional connectivity that reveals critical cognitive information is under-explored. Additionally, existing methods predict labels on individual contrastive representation without recognizing neighbouring information in the patient group, whereas interpatient contrast can act as a similarity measure suitable for population-based classification. We hereby proposed contrastive functional connectivity graph learning for population-based fMRI classification. Representations on the functional connectivity graphs are "repelled" for heterogeneous patient pairs meanwhile homogeneous pairs "attract" each other. Then a dynamic population graph that strengthens the connections between similar patients is updated for classification. Experiments on a multi-site dataset ADHD200 validate the superiority of the proposed method on various metrics. We initially visualize the population relationships and exploit potential subtypes.