论文标题
参数欧拉$ t $ - 奇数谐波数字
Parametric Euler $T$-sums of odd harmonic numbers
论文作者
论文摘要
在本文中,我们定义了广义Euler总和的参数变体,并将其称为(交替的)参数Euler $ t $ -sums。通过使用轮廓集成方法和残基定理,我们为线性参数Euler $ t $ SUMS建立了几个明确的公式。此外,通过应用结果,我们获得了Hoffman(交替的)双$ T $ VALUES和KANEKO-TSUMURA(交替的)Double $ t $ VALUES的明确公式。
In this paper, we define a parametric variant of generalized Euler sums and call them the (alternating) parametric Euler $T$-sums. By using the contour integration method and residue theorem, we establish several explicit formulae for the linear parametric Euler $T$-sums. Furthermore, by applying the results, we obtain explicit formulae for the Hoffman's (alternating) double $t$-values and Kaneko-Tsumura's (alternating) double $T$-values.