论文标题

使用贝叶斯优化调整具有安全限制的粒子加速器

Tuning Particle Accelerators with Safety Constraints using Bayesian Optimization

论文作者

Kirschner, Johannes, Mutný, Mojmir, Krause, Andreas, de Portugal, Jaime Coello, Hiller, Nicole, Snuverink, Jochem

论文摘要

粒子加速器的调谐计算机参数是一项重复且耗时的任务,可自动化。尽管可以使用许多现成的优化算法,但实际上,它们的使用受到限制,因为大多数方法都不考虑每种迭代中的安全至关重要的约束,例如损失信号或步进尺寸的限制。一个值得注意的例外是安全的贝叶斯优化,这是通过嘈杂的反馈进行数据驱动的调整方法。我们建议并评估保罗·施雷尔学院(PSI)的两个研究设施的安全贝叶斯优化的阶梯尺寸有限变体:a)瑞士游离电子激光器(SwissFel)和b)高强度质子加速器(HIPA)。我们报告了两台机器上有希望的实验结果,最多调整了16个受约束约束的参数。

Tuning machine parameters of particle accelerators is a repetitive and time-consuming task that is challenging to automate. While many off-the-shelf optimization algorithms are available, in practice their use is limited because most methods do not account for safety-critical constraints in each iteration, such as loss signals or step-size limitations. One notable exception is safe Bayesian optimization, which is a data-driven tuning approach for global optimization with noisy feedback. We propose and evaluate a step-size limited variant of safe Bayesian optimization on two research facilities of the Paul Scherrer Institut (PSI): a) the Swiss Free Electron Laser (SwissFEL) and b) the High-Intensity Proton Accelerator (HIPA). We report promising experimental results on both machines, tuning up to 16 parameters subject to 224 constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源