论文标题

解释方法中质量评估标准的元调查

A Meta Survey of Quality Evaluation Criteria in Explanation Methods

论文作者

Löfström, Helena, Hammar, Karl, Johansson, Ulf

论文摘要

由于最近在决策支持系统(DSS)中不透明的AI模型激增,解释方法及其评估已成为可解释的人工智能(XAI)的重要问题。由于最准确的AI模型是不透明的,透明度较低且可理解性,因此解释对于偏置检测和控制不确定性至关重要。评估解释方法质量时,有很多标准可供选择。但是,由于现有的标准着重于评估单个解释方法,因此如何比较不同方法的质量并不明显。这种缺乏共识在该领域的严格缺乏严重的短缺,尽管关于解释方法的比较评估很少。在本文中,我们在15个文献调查中进行了半系统的元调查,涵盖了解释性的评估,以确定可用于比较评估解释方法的现有标准。本文中的主要贡献是建议使用适当的信任作为衡量主观评估标准结果的标准,并因此使比较评估成为可能。我们还提出了解释质量方面的模型。在模型中,分组具有相似定义的标准,并与质量的三个确定方面有关。模型,解释和用户。我们还注意到文献中四个普遍接受的标准(组),涵盖了解释质量的各个方面:绩效,适当的信任,解释满意度和忠诚度。我们建议将该模型用作比较评估的图表,以创建更广泛的解释质量研究。

Explanation methods and their evaluation have become a significant issue in explainable artificial intelligence (XAI) due to the recent surge of opaque AI models in decision support systems (DSS). Since the most accurate AI models are opaque with low transparency and comprehensibility, explanations are essential for bias detection and control of uncertainty. There are a plethora of criteria to choose from when evaluating explanation method quality. However, since existing criteria focus on evaluating single explanation methods, it is not obvious how to compare the quality of different methods. This lack of consensus creates a critical shortage of rigour in the field, although little is written about comparative evaluations of explanation methods. In this paper, we have conducted a semi-systematic meta-survey over fifteen literature surveys covering the evaluation of explainability to identify existing criteria usable for comparative evaluations of explanation methods. The main contribution in the paper is the suggestion to use appropriate trust as a criterion to measure the outcome of the subjective evaluation criteria and consequently make comparative evaluations possible. We also present a model of explanation quality aspects. In the model, criteria with similar definitions are grouped and related to three identified aspects of quality; model, explanation, and user. We also notice four commonly accepted criteria (groups) in the literature, covering all aspects of explanation quality: Performance, appropriate trust, explanation satisfaction, and fidelity. We suggest the model be used as a chart for comparative evaluations to create more generalisable research in explanation quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源