论文标题
2D和3D中固定散射的转移矩阵公式:对最新发展的简要审查
Transfer matrix formulation of stationary scattering in 2D and 3D: A concise review of recent developments
论文作者
论文摘要
我们回顾了在两个和三个维度中固定散射的最近开发的传输矩阵公式,其中传递矩阵是在无限尺寸函数空间中作用的线性算子。我们讨论了它在规避紫外线差异方面遇到的效用方面遇到了在两个和三个维度中求解利普曼 - 舒林方程的三角洲功能电位。我们还使用它来构建复杂的散射电位,显示出完美的全向隐形性,以在自由定位的临界值以下频率。
We review a recently developed transfer matrix formulation of the stationary scattering in two and three dimensions where the transfer matrix is a linear operator acting in an infinite-dimensional function space. We discuss its utility in circumventing the ultraviolet divergences one encounters in solving the Lippman-Schwinger equation for delta-function potentials in two and three dimensions. We also use it to construct complex scattering potentials displaying perfect omnidirectional invisibility for frequencies below a freely preassigned cutoff.