论文标题

智能掩盖:在医学图像分析中编码上下文的深度Q学习

Intelligent Masking: Deep Q-Learning for Context Encoding in Medical Image Analysis

论文作者

Bahrami, Mojtaba, Ghorbani, Mahsa, Navab, Nassir

论文摘要

在监督环境中需要大量标记的数据的需求导致最近的研究利用自我监督的学习来使用未标记的数据预先培训深度神经网络。已经针对医疗数据集进行了一些研究,以利用更少的未标记数据中可用的信息进行了研究。基于图像的自学意义中的基本策略之一是上下文预测。在这种方法中,培训了一个模型,可以根据周围环境重建图像的任意缺失区域的内容。但是,现有方法通过将图像的所有区域均匀地关注随机和盲目掩盖方法。这种方法导致许多不必要的网络更新,这些更新会导致模型忘记了丰富的提取功能。在这项工作中,我们开发了一种新颖的自我监督方法,该方法阻止了针对性区域以改善训练程序。为此,我们提出了一个基于增强学习的代理,该代理商通过深度Q学习来学习智能掩盖图像。我们表明,针对预测模型的训练代理可以显着改善为下游分类任务提取的语义特征。我们在两个公共数据集上进行实验,用于在超声图像中诊断乳腺癌,并使用MR图像检测下级神经胶质瘤。在我们的实验中,我们表明我们的新颖掩蔽策略根据准确性,宏F1和AUROC的分类任务的性能提高了学习的特征。

The need for a large amount of labeled data in the supervised setting has led recent studies to utilize self-supervised learning to pre-train deep neural networks using unlabeled data. Many self-supervised training strategies have been investigated especially for medical datasets to leverage the information available in the much fewer unlabeled data. One of the fundamental strategies in image-based self-supervision is context prediction. In this approach, a model is trained to reconstruct the contents of an arbitrary missing region of an image based on its surroundings. However, the existing methods adopt a random and blind masking approach by focusing uniformly on all regions of the images. This approach results in a lot of unnecessary network updates that cause the model to forget the rich extracted features. In this work, we develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure. To this end, we propose a reinforcement learning-based agent which learns to intelligently mask input images through deep Q-learning. We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks. We perform our experiments on two public datasets for diagnosing breast cancer in the ultrasound images and detecting lower-grade glioma with MR images. In our experiments, we show that our novel masking strategy advances the learned features according to the performance on the classification task in terms of accuracy, macro F1, and AUROC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源