论文标题
在一维超级晶格下,狄拉克电子的新出现的额叶 - 平价 - 孔子 - 孔子
Emergent intersubband-plasmon-polaritons of Dirac electrons under one-dimensional superlattices
论文作者
论文摘要
人工超级晶格(SL)势已广泛用于石墨烯中二维(2D)狄拉克电子气体的带结构工程。尽管这种工程的电子带结构可以修改石墨烯的光学或等离子性能,但尚未报道过弱扰动作用(例如各向异性DRUDE重量)的新兴极化行为。在这里,我们表明,单层石墨烯中一维(1D)SL电势的极端调节变形了基础的迪拉克带分散体,并在费米表面附近引入了类似梯子的能级,从而导致光学电导率中出现的临时层间偏极响应。在我们提出的系统中,将HBN封装的石墨烯放在1D周期性的元元顶部。另外,将放置在Metagate下方的后挡板用作第二门,进一步调节了石墨烯区域的载体密度,而石墨烯中未直接筛选元元。使用强载载密度调制,石墨烯电子经历了一系列深势孔,并且在垂直于调制方向的足够的动量上,狄拉克电子通过总内部反射被波导。这些波导模式显示为平坦的子带,能量水平几乎是稳定的。结果,在等离子体分散体中与超长耦合的杂种间叠层 - 叠层 - 叠层。我们的研究开辟了一条途径,以探索具有隔离式电子带结构的二维材料中的新兴偏振子。
Artifical superlattice (SL) potentials have been employed extensively for band structure engineering of two-dimensional (2D) Dirac electron gas in graphene. While such engineered electronic band structures can modify optical or plasmonic properties of graphene, an emergent polaritonic behavior beyond weak perturbative effects (e.g. anisotropic Drude weights) has not been reported. Here, we show that an extreme modulation of one-dimensional (1D) SL potentials in monolayer graphene deforms the underlying Dirac band dispersion and introduces ladder-like energy levels near the Fermi surface, which result in emergent intersubband polaritonic responses in optical conductivity. In our proposed system, hBN-encapsulated graphene is placed on top of a 1D periodic metagate. In addition, a backgate placed beneath the metagate is used as the second gate, further modulating carrier density on regions in graphene that are not directly screened by the metagate. With a strong carrier density modulation, graphene electrons experience an array of deep potential wells, and at large enough momenta perpendicular to the modulation direction, Dirac electrons are waveguided via total internal reflections. These waveguided modes appear as flat subbands with nearly equispaced energy levels. As a result, there arise hybrid intersubband-polaritons with ultra-strong coupling in plasmonic dispersions. Our study opens up an avenue for exploring emergent polaritons in two-dimensional materials with gate-tunable electronic band structures.