论文标题
基于视觉的安全登陆人口中无人机的安全着陆:虚拟环境中的实时验证
Visual-based Safe Landing for UAVs in Populated Areas: Real-time Validation in Virtual Environments
论文作者
论文摘要
人口稠密地区无人驾驶汽车(UAV)的安全自动降落是成功城市部署的关键方面,尤其是在紧急着陆情况下。尽管如此,在实际情况下验证自主降落是一项艰巨的任务,涉及受伤的高风险。在这项工作中,我们提出了一个框架,以使用光真实的虚拟环境对人群中的基于视觉的自主降落进行实时安全和彻底评估。我们建议将虚幻的图形引擎与Airsim插件结合使用,以进行无人机的模拟,并根据人群中的安全着陆区(SLZ)的视觉检测来评估自动降落策略。然后,我们研究了选择“最佳” SLZ的两个不同标准,并在不同的情况和条件下自动着陆时在城市场景的不同分布中对虚拟无人机的自主登陆进行评估。我们评估了不同的指标,以量化着陆策略的性能,建立与这项具有挑战性的任务中未来工作的基线,并通过大量的随机迭代进行分析。该研究表明,使用自主登陆算法有助于防止涉及人类的事故,这可能会释放无人机在人们附近的城市环境中的全部潜力。
Safe autonomous landing for Unmanned Aerial Vehicles (UAVs) in populated areas is a crucial aspect for successful urban deployment, particularly in emergency landing situations. Nonetheless, validating autonomous landing in real scenarios is a challenging task involving a high risk of injuring people. In this work, we propose a framework for real-time safe and thorough evaluation of vision-based autonomous landing in populated scenarios, using photo-realistic virtual environments. We propose to use the Unreal graphics engine coupled with the AirSim plugin for drone's simulation, and evaluate autonomous landing strategies based on visual detection of Safe Landing Zones (SLZ) in populated scenarios. Then, we study two different criteria for selecting the "best" SLZ, and evaluate them during autonomous landing of a virtual drone in different scenarios and conditions, under different distributions of people in urban scenes, including moving people. We evaluate different metrics to quantify the performance of the landing strategies, establishing a baseline for comparison with future works in this challenging task, and analyze them through an important number of randomized iterations. The study suggests that the use of the autonomous landing algorithms considerably helps to prevent accidents involving humans, which may allow to unleash the full potential of drones in urban environments near to people.