论文标题
来自弯曲背景上振幅的古典物理
Classical physics from amplitudes on curved backgrounds
论文作者
论文摘要
我们将Kosower-maybee-o'Connell(KMOC)形式主义概括,将经典的可观察物和散射幅度与弯曲背景有关。我们展示了如何在该背景上以散射幅度在弯曲的背景下移动的粒子的最终半经典状态。该框架中的两点幅度对应于具有背景依赖性内存效应的保守物理。作为一种应用,我们考虑了电磁和一般相对论中的平面波和冲击波背景。我们确定最终的半经典状态,表明它满足了弯曲背景上双复制的概念。然后,我们通过在此类背景上计算粒子的脉冲来得出结论,从而得出确切的结果和速度记忆效应。
We generalise the Kosower-Maybee-O'Connell (KMOC) formalism relating classical observables and scattering amplitudes to curved backgrounds. We show how to compute the final semiclassical state for a particle moving in a curved background in terms of scattering amplitudes on that background. Two-point amplitudes in this framework correspond to conservative physics with background-dependent memory effects. As an application, we consider plane wave and shockwave backgrounds both in electromagnetism and general relativity. We determine the final semiclassical state, showing it satisfies a notion of double copy on curved backgrounds. We then conclude by computing the impulse of a particle on such backgrounds, deriving exact results and velocity memory effects.