论文标题
用激光加速的离子脉冲的硅缺陷工程
Defect engineering of silicon with ion pulses from laser acceleration
论文作者
论文摘要
缺陷工程是经典电子设备开发和新兴量子设备的基础。在这里,我们报告了硅单晶的缺陷工程,该硅具有来自激光加速器的离子脉冲,其离子通量水平高达10^22离子/cm^2/s。从激光器靶的血浆膨胀的低能离子在表面附近植入,然后扩散成由高能离子局部预热的硅样品。我们观察到〜10^16 cm^-2的低能量离子量,比高能量(MEV)离子的通量高四个数量级。在最高能量沉积的区域,硅晶体从单个离子脉冲中去除角质。颜色中心,主要是W和G-中心,直接响应离子脉冲而无需随后退火步骤而形成。我们发现,G-Center的线宽在高离子通量的区域的增加远远超过W-中心的线宽,这与其电子结构的密度功能理论计算一致。激光离子加速度会产生高能量离子和低能离子的对齐脉冲,这些脉冲扩大了参数范围,用于缺陷工程和半导体的掺杂,具有离子通量,损伤速率和局部加热的可调余额。
Defect engineering is foundational to classical electronic device development and for emerging quantum devices. Here, we report on defect engineering of silicon single crystals with ion pulses from a laser accelerator with ion flux levels up to 10^22 ions/cm^2/s. Low energy ions from plasma expansion of the laser-foil target are implanted near the surface and then diffuse into silicon samples that were locally pre-heated by high energy ions. We observe low energy ion fluences of ~10^16 cm^-2, about four orders of magnitude higher than the fluence of high energy (MeV) ions. In the areas of highest energy deposition, silicon crystals exfoliate from single ion pulses. Color centers, predominantly W and G-centers, form directly in response to ion pulses without a subsequent annealing step. We find that the linewidth of G-centers increase in areas with high ion flux much more than the linewidth of W-centers, consistent with density functional theory calculations of their electronic structure. Laser ion acceleration generates aligned pulses of high and low energy ions that expand the parameter range for defect engineering and doping of semiconductors with tunable balances of ion flux, damage rates and local heating.