论文标题

$ gl_2 $在CM字段上的本地对称空间的非Eisenstein共同学

Non-Eisenstein cohomology of locally symmetric spaces for $GL_2$ over a CM field

论文作者

Gholami, Shayan

论文摘要

令$ f $为CM字段,让$ p $为素数。本文的目的是在温和条件下表明,本地对称空间的模式$ p $同时$ x $ $ gl_2(f)$ for prime to prime to $ p $属于Borel-Wallach范围$ [q_0,Q_0,Q_0,Q_0+\ ell_0] $在本地化的he ece nonnonnonnonly-nor-saxean heec eSENSEAL之后。从这个结果,我们将预期的后果推断为对第一个和最后的共同体学组的结构,作为Hecke代数的模块。

Let $F$ be a CM field, let $p$ be a prime number. The goal of this paper is to show, under mild conditions, that the modulo $p$ cohomology of the locally symmetric spaces $X$ for $GL_2(F)$ with level prime to $p$ is concentrated in degrees belonging to the Borel-Wallach range $[q_0,q_0+\ell_0]$ after localizing at a "strongly non-Eisenstein" maximal ideal of the Hecke algebra. From this result, we deduce expected consequences on the structure of the first and last cohomology groups as modules over the Hecke algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源