论文标题

数据驱动的运动学符合模型订单减少流体结构交互问题:应用于Stokes流中可变形的微胶囊的应用

Data-driven kinematics-consistent model order reduction of fluid-structure interaction problems: application to deformable microcapsules in a Stokes flow

论文作者

Dupont, Claire, De Vuyst, Florian, Salsac, Anne-Virginie

论文摘要

在本文中,我们提出了针对三维流体结构相互作用问题的动态数据驱动模型降低技术的通用方法。从高保真求解器的快照解决方案中鉴定出低阶连续线性差分系统。还原的顺序模型(ROM)使用不同的成分,例如正交分解(POD),动态模式分解(DMD)和基于Tikhonov的强大识别技术。一种插值方法用于预测训练数据库中不进行的非二维参数的任何值的胶囊动力学。然后,由预测的解决方案构建了动态系统。数值证据显示了还原模型从其初始状态(无论参数值如何)预测胶囊变形的时间进化的能力。通过数值分析所得低阶动力系统的准确性和稳定性。数值实验显示了一个很好的一致性,该一致性是根据经过修改的Hausdorff距离在全阶和低阶模型之间的胶囊溶液之间的距离,无论是在受到约束和未限制的流动的情况下。这项工作是朝着实时模拟流体结构问题进行实时模拟的第一个里程碑,可以将其扩展到非线性低阶系统,以说明强大的材料和流量非线性。它是快速设计和开发创新设备的宝贵创新工具。

In this paper, we present a generic approach of a dynamical data-driven model order reduction technique for three-dimensional fluid-structure interaction problems. A low-order continuous linear differential system is identified from snapshot solutions of a high-fidelity solver. The reduced order model (ROM) uses different ingredients like proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and Tikhonov-based robust identification techniques. An interpolation method is used to predict the capsule dynamics for any value of the governing non-dimensional parameters that are not in the training database. Then a dynamical system is built from the predicted solution. Numerical evidence shows the ability of the reduced model to predict the time-evolution of the capsule deformation from its initial state, whatever the parameter values. Accuracy and stability properties of the resulting low-order dynamical system are analyzed numerically. The numerical experiments show a very good agreement, measured in terms of modified Hausdorff distance between capsule solutions of the full-order and low-order models both in the case of confined and unconfined flows. This work is a first milestone to move towards real time simulation of fluid-structure problems, which can be extended to non-linear low-order systems to account for strong material and flow non-linearities. It is a valuable innovation tool for rapid design and for the development of innovative devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源