论文标题
Viterbo的光谱构成统一空间的猜想
Viterbo's spectral bound conjecture for homogeneous spaces
论文作者
论文摘要
我们在紧凑的cotangent束$ t^*m $的紧凑型Lagrangian submanifolds上的频谱距离构成了一个猜想。如果我们考虑到最大Reeb和弦的长度,这也适用于一些沉浸的Lagrangian Submanifolds。
We prove a conjecture of Viterbo about the spectral distance on the space of compact exact Lagrangian submanifolds of a cotangent bundle $T^*M$ in the case where $M$ is a compact homogeneous space: if such a Lagrangian submanifold is contained in the unit ball bundle of $T^*M$, its spectral distance to the zero section is uniformly bounded. This also holds for some immersed Lagrangian submanifolds if we take into account the length of the maximal Reeb chord.