论文标题

Pearpeon模型中的可集成二次结构

Integrable quadratic structures in peakon models

论文作者

Avan, J., Frappat, L., Ragoucy, E.

论文摘要

我们提出了三个可宽松的$ n $ n $ n $ peampon方程,camassa-holm,degasperis-procesi和novikov的lax表示的泊松结构的实现。源自连续方程的集成性结构的泊松结构产生了$ r $ -matrix表示的二次形式,而Toda Molecule Classical $ r $ -Matrix发挥了重要作用。 我们为$ r $ -matrix表示形式寻找线性形式。除了Camassa-Holm Case(在结构已经知道的情况下),其他两个案例不允许这样的演示,而Novikov模型的明显除外,$ n = 2 $。 在三种情况下,从规范的sklyanin痕量公式获得的普通汉密尔顿量。

We propose realizations of the Poisson structures for the Lax representations of three integrable $n$-body peakon equations, Camassa--Holm, Degasperis--Procesi and Novikov. The Poisson structures derived from the integrability structures of the continuous equations yield quadratic forms for the $r$-matrix representation, with the Toda molecule classical $r$-matrix playing a prominent role. We look for a linear form for the $r$-matrix representation. Aside from the Camassa--Holm case, where the structure is already known, the two other cases do not allow such a presentation, with the noticeable exception of the Novikov model at $n=2$. Generalized Hamiltonians obtained from the canonical Sklyanin trace formula for quadratic structures are derived in the three cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源