论文标题

2D加速手性边缘模式的拓扑BF描述

Topological BF description of 2D accelerated chiral edge modes

论文作者

Bertolini, Erica, Fecit, Filippo, Maggiore, Nicola

论文摘要

我们认为在通用3D歧管上具有径向边界的拓扑亚巴BF理论。我们的目的是研究边界是否,何处以及如何保持对背景度量的细节的记忆。我们发现某些特征在拓扑上受到保护,并且不依赖于批量度量。在边界上诱导的2D动作全息取决于两个标量场,并且可以在两个Luttinger动作中解耦,这些动作描述了两个手性玻色子在3D块的边缘移动。结果是,这些边缘激发是加速的,这是散装时空的非平局性质的直接结果。实际上,边缘模式的手性速度通过边界上诱导的度量的决定因素获得了局部依赖性。我们发现边缘准粒子运动的三个可能性:相同的方向,相反的方向和单个移动模式。但是,要求2D理论的哈密顿在下面的界面上,朝着相同方向移动的边缘模式的情况被排除在外:涉及平行霍尔电流的系统(例如,$ν= 2/5 $的分数量子霍尔效应,BF理论无法与边界理论描述,而不是独立于边界,而是独立于构成空间空间的几何。因此,我们的身体状况为特征,其特征是边缘激发以相反的速度移动(示例是$ν= 1-1/n $,带有$ n $阳性整数和螺旋luttinger液体现象)或单个移动模式(量子异常霍尔)。通过需要时间逆转对称性来获得强大的限制,该对称唯一地识别了相等和相反的速度模式,我们知道拓扑绝缘子就是这种情况。关于扁平散装背景的新颖性是,这些模式具有局部速度,这对应于具有加速边缘模式的拓扑绝缘子。

We consider the topological abelian BF theory with radial boundary on a generic 3D manifold. Our aim is to study if, where and how the boundary keeps memory of the details of the background metric. We find that some features are topologically protected and do not depend on the bulk metric. The 2D action holographically induced on the boundary depends on two scalar fields, and can be decoupled in two Luttinger actions describing two chiral bosons moving on the edge of the 3D bulk. The outcome is that these edge excitations are accelerated, as a direct consequence of the non-flat nature of the bulk spacetime. The chiral velocities of the edge modes, indeed, acquire a local dependence through the determinant of the induced metric on the boundary. We find three possibilities for the motion of the edge quasiparticles: same directions, opposite directions and a single-moving mode. But, requiring that the Hamiltonian of the 2D theory is bounded by below, the case of edge modes moving in the same direction is ruled out: systems involving parallel Hall currents (for instance Fractional Quantum Hall Effect with $ν=2/5$) cannot be described by a BF theory with boundary, independently from the geometry of the bulk spacetime, because of positive energy considerations. We are therefore left with physical situations characterized by edge excitations moving with opposite velocities (examples are FQHE with $ν=1-1/n$, with $n$ positive integer, and Helical Luttinger Liquids phenomena) or a single-moving mode (Quantum Anomalous Hall). A strong restriction is obtained by requiring Time Reversal symmetry, which uniquely identifies modes with equal and opposite velocities, and we know that this is the case of Topological Insulators. The novelty, with respect to the flat bulk background, is that the modes have local velocities, which corresponds to Topological Insulators with accelerated edge modes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源