论文标题

使用深度转移学习对子弹影响的胸部X射线解释

Interpretation of Chest x-rays affected by bullets using deep transfer learning

论文作者

Khan, Shaheer, Farooq, Azib, Khan, Israr, Khan, Muhammad Gulraiz, Razzaq, Abdul

论文摘要

深度学习的潜力,尤其是在医学成像中,启动了惊人的结果,并在每一天之后都改善了方法。放射学的深度学习为自动分类,检测和细分不同疾病提供了机会。在拟议的研究中,我们研究了医学成像的非平凡方面,在该方面中,我们对受子弹影响影响的X射线进行了分类。我们在不同的分类和本地化模型上测试了图像,以获得相当高的准确性。研究中使用的复制数据集已在胸部X射线的不同图像上复制。提出的模型不仅在胸部X光片上,而且在其他身体器官X射线上工作,例如腿部,腹部,头部,甚至基于胸部X光片的训练数据集。调整参数后,自定义模型已用于分类和本地化目的。最后,我们的发现的结果使用了不同的框架。这可能有助于研究这一领域的启发。据我们所知,这是对使用深度学习对子弹影响的X光片检测和分类进行的首次研究。

The potential of deep learning, especially in medical imaging, initiated astonishing results and improved the methodologies after every passing day. Deep learning in radiology provides the opportunity to classify, detect and segment different diseases automatically. In the proposed study, we worked on a non-trivial aspect of medical imaging where we classified and localized the X-Rays affected by bullets. We tested Images on different classification and localization models to get considerable accuracy. The replicated data set used in the study was replicated on different images of chest X-Rays. The proposed model worked not only on chest radiographs but other body organs X-rays like leg, abdomen, head, even the training dataset based on chest radiographs. Custom models have been used for classification and localization purposes after tuning parameters. Finally, the results of our findings manifested using different frameworks. This might assist the research enlightening towards this field. To the best of our knowledge, this is the first study on the detection and classification of radiographs affected by bullets using deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源