论文标题

切成薄片的Wasserstein生成模型的摊销投影优化

Amortized Projection Optimization for Sliced Wasserstein Generative Models

论文作者

Nguyen, Khai, Ho, Nhat

论文摘要

寻求信息丰富的投影方向是利用在应用中使用切片的瓦斯坦距离的重要任务。但是,找到这些方向通常需要在投影方向的空间上进行迭代优化程序,这在计算上很昂贵。此外,在深度学习应用中,计算问题甚至更为严重,其中重复了两次微型批次概率措施之间的距离。这个嵌套的环路一直是防止基于良好预测在实践中的良好预测的距离距离的主要挑战之一。为了应对这一挑战,我们建议利用学习到优化的技术或摊销优化,以预测任何给定的两种微型批次概率措施的信息方向。据我们所知,这是桥梁摊销优化和切成薄片的生成模型的第一部作品。特别是,我们得出了线性摊销模型,广义线性摊销模型和非线性摊销模型,这些模型对应于三种类型的新型迷你批次损失,称为摊销的切片Wasserstein。我们证明了在标准基准数据集中深层生成建模中提出的切片损失的良好性能。

Seeking informative projecting directions has been an important task in utilizing sliced Wasserstein distance in applications. However, finding these directions usually requires an iterative optimization procedure over the space of projecting directions, which is computationally expensive. Moreover, the computational issue is even more severe in deep learning applications, where computing the distance between two mini-batch probability measures is repeated several times. This nested loop has been one of the main challenges that prevent the usage of sliced Wasserstein distances based on good projections in practice. To address this challenge, we propose to utilize the learning-to-optimize technique or amortized optimization to predict the informative direction of any given two mini-batch probability measures. To the best of our knowledge, this is the first work that bridges amortized optimization and sliced Wasserstein generative models. In particular, we derive linear amortized models, generalized linear amortized models, and non-linear amortized models which are corresponding to three types of novel mini-batch losses, named amortized sliced Wasserstein. We demonstrate the favorable performance of the proposed sliced losses in deep generative modeling on standard benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源