论文标题

基于有效理论空间采样的基于仿真的推断:应用于异常穆恩(G-2)的超对称解释的应用

Simulation Based Inference for Efficient Theory Space Sampling: an Application to Supersymmetric Explanations of the Anomalous Muon (g-2)

论文作者

Morrison, Logan, Profumo, Stefano, Smyth, Nolan, Tamanas, John

论文摘要

为了最大程度地减少样本模型评估的数量,我们提出并研究了利用(顺序)可能性的(顺序)可能性与证据比率神经估计的算法。我们将我们的算法应用于对异常磁极磁性偶极时刻的超对称解释,并在现场中恢复过度的模型中的模型,并恢复过多的模型。实验约束的理论空间。最后,我们总结了这些算法在未来的研究中的进一步潜在可能用途。

For the purpose of minimizing the number of sample model evaluations, we propose and study algorithms that utilize (sequential) versions of likelihood-to-evidence ratio neural estimation.We apply our algorithms to a supersymmetric interpretation of the anomalous muon magnetic dipole moment in the context of a phenomenological minimal supersymmetric extension of the standard model, and recover non-trivial models in an experimentally-constrained theory space. Finally we summarize further potential possible uses of these algorithms in future studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源