论文标题

在边缘,雾和云资源上的数据触发应用程序的弹性执行

Resilient Execution of Data-triggered Applications on Edge, Fog and Cloud Resources

论文作者

Varshney, Prateeksha, Ramesh, Shriram, Chhabra, Shayal, Khochare, Aakash, Simmhan, Yogesh

论文摘要

物联网(IoT)导致有关物理世界的流数据的普遍可用性,再加上部署的边缘计算基础架构作为智能城市的一部分和5G推出。这些受到限制的,不太可靠但廉价的资源得到了雾化资源的补充,这些资源提供了联合管理和加速计算,以及付费的云资源。缺乏部署应用程序管道来消费这种多样的流,并在边缘和雾资资源上可靠地执行它们。我们提出了一个创新的应用程序模型来声明地指定查询以匹配流源中的微批量数据流,并触发数据管道的分布式执行。我们还使用可靠的雾气上的高级预订设计了弹性的调度策略,以确保截止日期内的数据流程完成,同时最大程度地减少执行成本。我们对超过100个虚拟物联网资源的详细实验以及与基线调度策略进行比较的$ \ $ \ 10K $执行的实验,说明了我们框架的成本效益,弹性和可扩展性。

Internet of Things (IoT) is leading to the pervasive availability of streaming data about the physical world, coupled with edge computing infrastructure deployed as part of smart cities and 5G rollout. These constrained, less reliable but cheap resources are complemented by fog resources that offer federated management and accelerated computing, and pay-as-you-go cloud resources. There is a lack of intuitive means to deploy application pipelines to consume such diverse streams, and to execute them reliably on edge and fog resources. We propose an innovative application model to declaratively specify queries to match streams of micro-batch data from stream sources and trigger the distributed execution of data pipelines. We also design a resilient scheduling strategy using advanced reservation on reliable fogs to guarantee dataflow completion within a deadline while minimizing the execution cost. Our detailed experiments on over 100 virtual IoT resources and for $\approx 10k$ task executions, with comparison against baseline scheduling strategies, illustrates the cost-effectiveness, resilience and scalability of our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源