论文标题

达蒙(Damon):使用拓扑歧管学习和变异自动编码的动态无定形障碍物导航

DAMON: Dynamic Amorphous Obstacle Navigation using Topological Manifold Learning and Variational Autoencoding

论文作者

Dastider, Apan, Lin, Mingjie

论文摘要

达蒙(Damon)利用多种学习和变异自动编码来实现避免障碍物,从而通过自适应图遍历运动计划,以预度的低维层次结构歧管图捕获机器人臂及其障碍物之间的复杂运动动态。这种多功能和可重复使用的方法适用于各种协作场景。 达蒙(Damon)的主要优点是它能够将信息嵌入低维图中,从而消除了基于当前采样方法所需的重复计算的需求。结果,它提供了更快,更有效的运动计划,并且计算开销和内存足迹明显较低。总而言之,达蒙是一种突破性的方法,它解决了机器人系统中动态障碍的挑战,并为安全有效的人类机器人协作提供了有希望的解决方案。 我们的方法已在模拟和物理设置中都在7多型机器人操作器上进行了实验验证。达蒙(Damon)使机器人能够学习和生成技能,以避免以前的障碍,同时实现预定义的目标。我们还使用分析框架优化了Damon的设计参数和性能。我们的方法的表现优于主流方法,包括RRT,RRT*,Dynamic RRT*,L2RRT和MPNET,平均轨迹平滑度和超过65 \%的延迟性能超过40 \%。

DAMON leverages manifold learning and variational autoencoding to achieve obstacle avoidance, allowing for motion planning through adaptive graph traversal in a pre-learned low-dimensional hierarchically-structured manifold graph that captures intricate motion dynamics between a robotic arm and its obstacles. This versatile and reusable approach is applicable to various collaboration scenarios. The primary advantage of DAMON is its ability to embed information in a low-dimensional graph, eliminating the need for repeated computation required by current sampling-based methods. As a result, it offers faster and more efficient motion planning with significantly lower computational overhead and memory footprint. In summary, DAMON is a breakthrough methodology that addresses the challenge of dynamic obstacle avoidance in robotic systems and offers a promising solution for safe and efficient human-robot collaboration. Our approach has been experimentally validated on a 7-DoF robotic manipulator in both simulation and physical settings. DAMON enables the robot to learn and generate skills for avoiding previously-unseen obstacles while achieving predefined objectives. We also optimize DAMON's design parameters and performance using an analytical framework. Our approach outperforms mainstream methodologies, including RRT, RRT*, Dynamic RRT*, L2RRT, and MpNet, with 40\% more trajectory smoothness and over 65\% improved latency performance, on average.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源