论文标题

通过神经网络学习运营商学习的成本准确性权衡

The Cost-Accuracy Trade-Off In Operator Learning With Neural Networks

论文作者

de Hoop, Maarten V., Huang, Daniel Zhengyu, Qian, Elizabeth, Stuart, Andrew M.

论文摘要

计算科学和工程中的“替代建模”一词是指昂贵模拟的计算有效近似值的开发,例如由部分微分方程(PDE)的数值解引起的。替代建模是科学和工程中多经常计算的一种有助方法,其中包括在不确定性量化中的优化和采样方法中的迭代方法。在过去的几年中,出现了使用神经网络的PDE替代建模的几种方法,这是出于使用神经网络在其他领域近似非线性图的成功的动机。原则上,可以通过理解达到给定准确性所需的成本来评估这些不同方法的相对优点。但是,这些方法缺乏近似错误的完整理论,因此很难评估这种成本准确性的权衡。本文的目的是对此问题进行仔细的数值研究,并比较了连续机械中PDE模型引起的一系列问题的多种不同神经网络架构,以进行操作员近似。

The term `surrogate modeling' in computational science and engineering refers to the development of computationally efficient approximations for expensive simulations, such as those arising from numerical solution of partial differential equations (PDEs). Surrogate modeling is an enabling methodology for many-query computations in science and engineering, which include iterative methods in optimization and sampling methods in uncertainty quantification. Over the last few years, several approaches to surrogate modeling for PDEs using neural networks have emerged, motivated by successes in using neural networks to approximate nonlinear maps in other areas. In principle, the relative merits of these different approaches can be evaluated by understanding, for each one, the cost required to achieve a given level of accuracy. However, the absence of a complete theory of approximation error for these approaches makes it difficult to assess this cost-accuracy trade-off. The purpose of the paper is to provide a careful numerical study of this issue, comparing a variety of different neural network architectures for operator approximation across a range of problems arising from PDE models in continuum mechanics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源