论文标题
产品空间中的共轭高原结构
Conjugate Plateau constructions in product spaces
论文作者
论文摘要
从纯粹的几何学角度来看,本次调查文件研究了丹尼尔的等距结合在最小和恒定的平均曲率表面与均质的三曼族三元型融合的平均曲率表面,并具有四个维度的等距组。一方面,我们收集了迄今为止已经开发出来的文献中的结果和策略,以处理共轭表面及其嵌入性的分析。另一方面,我们重新审视了均质产品空间中恒定平均曲率表面的一些构造平均曲率。最后,我们还使用表面Evolver提供了一些数字图片。
This survey paper investigates, from a purely geometric point of view, Daniel's isometric conjugation between minimal and constant mean curvature surfaces immersed in homogeneous Riemannian three-manifolds with isometry group of dimension four. On the one hand, we collect the results and strategies in the literature that have been developed so far to deal with the analysis of conjugate surfaces and their embeddedness. On the other hand, we revisit some constructions of constant mean curvature surfaces in the homogeneous product spaces $\mathbb{S}^2\times\mathbb{R}$, $\mathbb{H}^2\times\mathbb{R}$ and $\mathbb{R}^3$ having different topologies and geometric properties depending on the value of the mean curvature. Finally, we also provide some numerical pictures using Surface Evolver.