论文标题
普遍性,复杂性和渐近平滑的巴拉克空间
Universality, complexity and asymptotically uniformly smooth Banach spaces
论文作者
论文摘要
对于$ 1 <p \ le \ infty $,我们展示了一个Banach空间的存在,该空间既是在所有可分开的Banach空间的阶级又是通用的,并具有等效的$ P $ asmptottottottottotic均匀平滑的规范。我们证明,该类别在可分离的Banach空间中已经完成。这些结果扩展了Kalton,Werner和Kurka在此情况下的先前工作。
For $1<p\le \infty$, we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent $p$-asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by Kalton, Werner and Kurka in the case $p=\infty$.