论文标题

使用高斯流程的信道特征的可能性建模的位置跟踪

Position Tracking using Likelihood Modeling of Channel Features with Gaussian Processes

论文作者

Kram, Sebastian, Kraus, Christopher, Feigl, Tobias, Stahlke, Maximilian, Robert, Jörg, Mutschler, Christopher

论文摘要

最近的定位框架利用复杂通道测量值(CM)的空间信息即使在多径传播方案中也可以估算准确的位置。最先进的CM指纹(FP)方法采用卷积神经网络(CNN)来提取空间信息。但是,他们需要在空间密集的数据集(与高采集和维护工作相关联)才能正常工作 - 在实际应用中,这种情况很少是这种情况。如果此类数据不可用(或其质量较低),我们将无法补偿基于CNN的FP的性能降低,因为它们不提供统计位置估计,这阻止了与观察水平上的其他信息源融合。 我们提出了一个新型的本地化框架,该框架很好地适应了稀疏数据集,该数据集仅包含具有强大多径传播环境中特定区域的CMS。我们的框架将CMS压缩为信息丰富的功能,以揭示空间信息。然后,它为每个人都会回归高斯过程(GPS),这意味着基于距离依赖性的协方差内核的统计观察模型。我们的框架将受过训练的GP与粒子滤清器中的视线范围和动力学模型相结合。我们的测量结果表明,我们的方法在现实的工业室内环境中收集的空间稀疏数据上,我们的方法优于最先进的CNN指纹(0.52 m对1.3 m MAE)。

Recent localization frameworks exploit spatial information of complex channel measurements (CMs) to estimate accurate positions even in multipath propagation scenarios. State-of-the art CM fingerprinting(FP)-based methods employ convolutional neural networks (CNN) to extract the spatial information. However, they need spatially dense data sets (associated with high acquisition and maintenance efforts) to work well -- which is rarely the case in practical applications. If such data is not available (or its quality is low), we cannot compensate the performance degradation of CNN-based FP as they do not provide statistical position estimates, which prevents a fusion with other sources of information on the observation level. We propose a novel localization framework that adapts well to sparse datasets that only contain CMs of specific areas within the environment with strong multipath propagation. Our framework compresses CMs into informative features to unravel spatial information. It then regresses Gaussian processes (GPs) for each of them, which imply statistical observation models based on distance-dependent covariance kernels. Our framework combines the trained GPs with line-of-sight ranges and a dynamics model in a particle filter. Our measurements show that our approach outperforms state-of-the-art CNN fingerprinting (0.52 m vs. 1.3 m MAE) on spatially sparse data collected in a realistic industrial indoor environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源