论文标题
Hölder规律性的分数$ p $ -laplace方程
Hölder regularity for fractional $p$-Laplace equations
论文作者
论文摘要
我们为Hölder规律性提供了替代证明,用于在分数p-Laplacian上建模的非本地椭圆形准方程的弱解,在此我们通过连续迭代以一系列同心球替换离散的de giorgi迭代。这项工作可以看作是Tiziano Granucci所开发的思想的非局限性对应物。
We give an alternative proof for Hölder regularity for weak solutions of nonlocal elliptic quasilinear equations modelled on the fractional p-Laplacian where we replace the discrete De Giorgi iteration on a sequence of concentric balls by a continuous iteration. This work can be viewed as the nonlocal counterpart to the ideas developed by Tiziano Granucci.