论文标题
bailando:演员批评的3D舞蹈生成编舞记忆
Bailando: 3D Dance Generation by Actor-Critic GPT with Choreographic Memory
论文作者
论文摘要
由于编舞规范对姿势的空间限制,驾驶3D角色在一段音乐之后跳舞是高度挑战的。此外,产生的舞蹈序列还需要与不同的音乐流派保持时间连贯性。为了应对这些挑战,我们提出了一个新颖的音乐到舞蹈框架Bailando,其中有两个强大的组成部分:1)舞蹈记忆,学会学会总结从3D姿势序列到量化的代码书到量化的代码书到量化的有意义的舞蹈单元,2)一个参与者 - 批判性生成的预培养的预培养的预训练的预训练器(GPT),将这些单位组成这些单元,以使音乐舞蹈舞蹈演奏型舞蹈演奏者,从而构成了音乐。借助学习的编排记忆,舞蹈产生将在符合高编舞标准的量化单元上实现,因此生成的舞蹈序列限制在空间约束中。为了实现各种运动节奏和音乐节奏之间的同步对齐,我们通过新设计的Beat-Align奖励功能向GPT介绍了基于演员的强化学习方案。标准基准测试的广泛实验表明,我们提出的框架在定性和定量上都能达到最先进的性能。值得注意的是,学到的编舞记忆被证明可以以无监督的方式发现人解剖的舞蹈风格姿势。
Driving 3D characters to dance following a piece of music is highly challenging due to the spatial constraints applied to poses by choreography norms. In addition, the generated dance sequence also needs to maintain temporal coherency with different music genres. To tackle these challenges, we propose a novel music-to-dance framework, Bailando, with two powerful components: 1) a choreographic memory that learns to summarize meaningful dancing units from 3D pose sequence to a quantized codebook, 2) an actor-critic Generative Pre-trained Transformer (GPT) that composes these units to a fluent dance coherent to the music. With the learned choreographic memory, dance generation is realized on the quantized units that meet high choreography standards, such that the generated dancing sequences are confined within the spatial constraints. To achieve synchronized alignment between diverse motion tempos and music beats, we introduce an actor-critic-based reinforcement learning scheme to the GPT with a newly-designed beat-align reward function. Extensive experiments on the standard benchmark demonstrate that our proposed framework achieves state-of-the-art performance both qualitatively and quantitatively. Notably, the learned choreographic memory is shown to discover human-interpretable dancing-style poses in an unsupervised manner.