论文标题

使用超声心动图的新生儿中肺动脉高压的可解释预测

Interpretable Prediction of Pulmonary Hypertension in Newborns using Echocardiograms

论文作者

Ragnarsdottir, Hanna, Manduchi, Laura, Michel, Holger, Laumer, Fabian, Wellmann, Sven, Ozkan, Ece, Vogt, Julia

论文摘要

新生儿和婴儿中的肺动脉高压(pH)是一种复杂的疾病,与有助于发病率和死亡的几种肺,心脏和全身性疾病有关。因此,准确和早期的pH检测对于成功管理至关重要。使用超声心动图,这是儿科的主要诊断工具,人类评估既耗时又是专业知识,从而增加了对自动化方法的需求。在这项工作中,我们提出了一种可解释的基于多视频视频的深度学习方法,用于预测使用超声心动图的194个新生儿队列的pH。我们使用时空卷积体系结构从每种视图中预测pH值,并使用多数投票来汇总不同观点的预测。据我们所知,这是使用超声心动图对新生儿自动评估自动评估的第一项工作。我们的结果显示,严重性预测的平均F1得分为0.84,使用10倍交叉验证的二进制检测为0.92。我们通过显着图来补充我们的预测,并表明该模型侧重于临床相关的心脏结构,激发了其在临床实践中的使用。

Pulmonary hypertension (PH) in newborns and infants is a complex condition associated with several pulmonary, cardiac, and systemic diseases contributing to morbidity and mortality. Therefore, accurate and early detection of PH is crucial for successful management. Using echocardiography, the primary diagnostic tool in pediatrics, human assessment is both time-consuming and expertise-demanding, raising the need for an automated approach. In this work, we present an interpretable multi-view video-based deep learning approach to predict PH for a cohort of 194 newborns using echocardiograms. We use spatio-temporal convolutional architectures for the prediction of PH from each view, and aggregate the predictions of the different views using majority voting. To the best of our knowledge, this is the first work for an automated assessment of PH in newborns using echocardiograms. Our results show a mean F1-score of 0.84 for severity prediction and 0.92 for binary detection using 10-fold cross-validation. We complement our predictions with saliency maps and show that the learned model focuses on clinically relevant cardiac structures, motivating its usage in clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源