论文标题
滑轮的单一支撑是$γ$ - 二氧化
The singular support of sheaves is $γ$-coisotropic
论文作者
论文摘要
我们证明,衍生的带轮类别中的元素的单数支持是$γ$ - 二氧化型,这是[vit22]中定义的概念。我们证明,这意味着它是在喀什 - 萨皮拉(Kashiwara-Schapira)的意义上参与的,但是作为$γ$ - 胶状的兴奋性具有符号同质形态的不变性(虽然投入仅由$ c^1 $ c^1 $ diffeoMormorplismss),而我们给出了$γ$ -CO的示例,而不是$γ$ -CO。在此过程中,我们证明了许多有关单数支持和光谱规范$γ$的结果,并提出了许多新问题。
We prove that the singular support of an element in the derived category of sheaves is $γ$-coisotropic, a notion defined in [Vit22]. We prove that this implies that it is involutive in the sense of Kashiwara-Schapira, but being $γ$-coisotropic has the advantage to be invariant by symplectic homeomorphisms (while involutivity is only invariant by $C^1$ diffeomorphisms) and we give an example of an involutive set that is not $γ$-coisotropic. Along the way we prove a number of results relating the singular support and the spectral norm $γ$ and raise a number of new questions.