论文标题

过渡路径集合的扩散率依赖性

Diffusivity dependence of the transition path ensemble

论文作者

Kikuchi, Lukas, Adhikari, Ronojoy, Kappler, Julian

论文摘要

随机动力学系统的过渡路径通常由Instantons近似。在这里,我们使用包含两个竞争途径的动态系统显示,在低到中间的温度下,Instantons可能无法捕获最可能的过渡途径。我们构建了一个近似值,其中包括激发液周围的波动,并通过与精确有效的路径空间蒙特卡洛采样方法进行比较,找到了这种近似值以在广泛的温度下保持。我们的工作划定了大偏差理论的适用性,并提供了数值探测这些限制的方法。

Transition pathways of stochastic dynamical systems are typically approximated by instantons. Here we show, using a dynamical system containing two competing pathways, that at low-to-intermediate temperatures, instantons can fail to capture the most likely transition pathways. We construct an approximation which includes fluctuations around the instanton and, by comparing with the results of an accurate and efficient path-space Monte Carlo sampling method, find this approximation to hold for a wide range of temperatures. Our work delimits the applicability of large deviation theory and provides methods to probe these limits numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源