论文标题

Gessel号码的注释

A Note on the Gessel Numbers

论文作者

Mikić, Jovan

论文摘要

Gessel编号$ P(N,R)$代表具有单位水平和垂直步骤从$(0,0)$到$(N+R,N+R-1)$的晶格路径的数量,这些步骤从未触及集合$ \ {((x,x)\ in \ in \ in \ MathBB {z}^2:x:x:x \ geq r中的任何点。在本文中,我们使用组合论点来得出$ p(n,r)$和$ p(n-1,r+1)$之间的复发关系。另外,我们为$ p(n,r)$的知名封闭式公式提供了新的证明。此外,提出了针对Gessel数字的新组合解释。

The Gessel number $P(n,r)$ represents the number of lattice paths in a plane with unit horizontal and vertical steps from $(0,0)$ to $(n+r,n+r-1)$ that never touch any of the points from the set $\{(x,x)\in \mathbb{Z}^2: x \geq r\}$. In this paper, we use combinatorial arguments to derive a recurrence relation between $P(n,r)$ and $P(n-1,r+1)$. Also, we give a new proof for a well-known closed formula for $P(n,r)$. Moreover, a new combinatorial interpretation for the Gessel numbers is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源