论文标题

Rubik的立方体操作员:插头和播放置换模块,以更好地安排高维工业数据

Rubik's Cube Operator: A Plug And Play Permutation Module for Better Arranging High Dimensional Industrial Data in Deep Convolutional Processes

论文作者

Yang, Luoxiao, Zheng, Zhong, Zhang, Zijun

论文摘要

卷积神经网络(CNN)已被广泛应用于处理基于工业数据的张量输入,该输入集成了从空间,时间和系统动态方面的分布式工业系统的数据记录。但是,与图像不同,基于工业数据的张量中的信息不一定在空间上排序。因此,直接应用CNN是无效的。为了解决此类问题,我们提出了一个插件模块,即Rubik的立方体操作员(RCO),以适应将基于工业数据的张量的数据组织定为CNN处理之前的最佳或次优属性顺序,可以通过CNN进行更新,并通过毕业生的CNN进行更新。拟议的RCO维持K二进制和右随机排列矩阵,以置换基于输入工业数据的张量的K轴的属性。提出了一个新颖的学习过程,以使学习排列矩阵从数据中,其中使用Gumbel-Softmax来重新聚集置换矩阵的要素,并提出了软正规化损失并将其添加到特定于任务的损失中,以确保置换数据的特征多样性。我们通过考虑通过CNN,风能预测(WPP)和来自可再生能源域的风速预测(WPP)来处理工业数据的两项代表性学习任务来验证拟议的RCO的有效性。计算实验是根据从不同风电场收集的四个数据集进行的,结果表明,提出的RCO可以显着改善基于CNN的网络的性能。

The convolutional neural network (CNN) has been widely applied to process the industrial data based tensor input, which integrates data records of distributed industrial systems from the spatial, temporal, and system dynamics aspects. However, unlike images, information in the industrial data based tensor is not necessarily spatially ordered. Thus, directly applying CNN is ineffective. To tackle such issue, we propose a plug and play module, the Rubik's Cube Operator (RCO), to adaptively permutate the data organization of the industrial data based tensor to an optimal or suboptimal order of attributes before being processed by CNNs, which can be updated with subsequent CNNs together via the gradient-based optimizer. The proposed RCO maintains K binary and right stochastic permutation matrices to permutate attributes of K axes of the input industrial data based tensor. A novel learning process is proposed to enable learning permutation matrices from data, where the Gumbel-Softmax is employed to reparameterize elements of permutation matrices, and the soft regularization loss is proposed and added to the task-specific loss to ensure the feature diversity of the permuted data. We verify the effectiveness of the proposed RCO via considering two representative learning tasks processing industrial data via CNNs, the wind power prediction (WPP) and the wind speed prediction (WSP) from the renewable energy domain. Computational experiments are conducted based on four datasets collected from different wind farms and the results demonstrate that the proposed RCO can improve the performance of CNN based networks significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源