论文标题

视频中面部表达分析的合奏方法

An Ensemble Approach for Facial Expression Analysis in Video

论文作者

Nguyen, Hong-Hai, Huynh, Van-Thong, Kim, Soo-Hyung

论文摘要

人类的情绪识别有助于人类计算机相互作用的发展。理解现实世界中人类情绪的机器将在未来为生活做出重大贡献。本文将在野外介绍情感行为分析(ABAW3)2022挑战。本文着重于解决价估计和动作单元检测的问题。对于价值估计,我们进行了两个阶段:创建来自多模型和时间学习的新特征,以预测价值。首先,我们制作新功能;使用常规网络(Regnet)功能合并门控复发单元(GRU)和变压器,该功能是从图像中提取的。下一步是GRU结合了当地的注意,以预测价值。一致性相关系数(CCC)用于评估模型。

Human emotions recognization contributes to the development of human-computer interaction. The machines understanding human emotions in the real world will significantly contribute to life in the future. This paper will introduce the Affective Behavior Analysis in-the-wild (ABAW3) 2022 challenge. The paper focuses on solving the problem of the valence-arousal estimation and action unit detection. For valence-arousal estimation, we conducted two stages: creating new features from multimodel and temporal learning to predict valence-arousal. First, we make new features; the Gated Recurrent Unit (GRU) and Transformer are combined using a Regular Networks (RegNet) feature, which is extracted from the image. The next step is the GRU combined with Local Attention to predict valence-arousal. The Concordance Correlation Coefficient (CCC) was used to evaluate the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源