论文标题
用于在有限场上生成随机原始多项式的量子加速算法
Quantum-accelerated algorithms for generating random primitive polynomials over finite fields
论文作者
论文摘要
有限领域的原始多项式对于计算机科学的各个领域至关重要,包括经典的伪随机数,编码理论和量词后密码学。然而,追求有效的经典算法在有限领域中生成随机原始多项式,仍然是一个持续的挑战。在本文中,我们还展示了如何通过混合量子古典算法有效地解决此问题,以及还提出了实施它们的特定量子电路的设计。我们的研究为各种量子通信和计算应用中的随机原始多项式的快速和实时生成铺平了道路。
Primitive polynomials over finite fields are crucial for various domains of computer science, including classical pseudo-random number generation, coding theory and post-quantum cryptography. Nevertheless, the pursuit of an efficient classical algorithm for generating random primitive polynomials over finite fields remains an ongoing challenge. In this paper, we show how to solve this problem efficiently through hybrid quantum-classical algorithms, and designs of the specific quantum circuits to implement them are also presented. Our research paves the way for the rapid and real-time generation of random primitive polynomials in diverse quantum communication and computation applications.