论文标题
直接评估具有深层神经进化的脑转移性疾病中疾病负担的进展或消退
Direct evaluation of progression or regression of disease burden in brain metastatic disease with Deep Neuroevolution
论文作者
论文摘要
目的:进步癌症治疗研究的核心组成部分是评估对治疗的反应。例如,按照Recist或Rano标准,手工做到这一点是乏味的,耗时的,可能会错过重要的肿瘤反应信息。最值得注意的是,它们排除了非目标病变。我们希望以整体方式评估所有病变的变化,对肿瘤进展或回归进行简单,信息性和自动化评估。由于通常在临床试验中的患者入学率较低,因此我们希望通过较小的培训集进行反应评估。深神经进化(DNE)可以产生放射学人工智能(AI),在小型训练集中表现良好。在这里,我们使用DNE进行功能近似,以预测转移性脑疾病的进展与回归。 方法:我们将50对MRI对比度增强图像分析为我们的训练集。这些对的一半在时间分开,有资格作为疾病进展,而其他25张图像构成回归。我们通过突变训练了相对较小的CNN的参数,这些突变由随机CNN重量调节和突变适应性组成。然后,我们将最佳突变纳入了下一代CNN,重复了大约50,000代的过程。我们将CNN应用于训练集,以及一个单独的测试集,具有25个进展和25个回归图像的相同类别平衡。 结果:DNE达到了单调收敛到100%训练集精度。 DNE还单调地收敛到100%测试集精度。 结论:DNE可以准确地对脑部转移性疾病的进展与回归进行分类。未来的工作将将输入从2D图像切片扩展到完整的3D卷,并包括无更改的类别。我们认为,像我们这样的方法最终可以为Rano/Recist评估提供有用的辅助手段。
Purpose: A core component of advancing cancer treatment research is assessing response to therapy. Doing so by hand, for example as per RECIST or RANO criteria, is tedious, time-consuming, and can miss important tumor response information; most notably, they exclude non-target lesions. We wish to assess change in a holistic fashion that includes all lesions, obtaining simple, informative, and automated assessments of tumor progression or regression. Due to often low patient enrolments in clinical trials, we wish to make response assessments with small training sets. Deep neuroevolution (DNE) can produce radiology artificial intelligence (AI) that performs well on small training sets. Here we use DNE for function approximation that predicts progression versus regression of metastatic brain disease. Methods: We analyzed 50 pairs of MRI contrast-enhanced images as our training set. Half of these pairs, separated in time, qualified as disease progression, while the other 25 images constituted regression. We trained the parameters of a relatively small CNN via mutations that consisted of random CNN weight adjustments and mutation fitness. We then incorporated the best mutations into the next generations CNN, repeating this process for approximately 50,000 generations. We applied the CNNs to our training set, as well as a separate testing set with the same class balance of 25 progression and 25 regression images. Results: DNE achieved monotonic convergence to 100% training set accuracy. DNE also converged monotonically to 100% testing set accuracy. Conclusion: DNE can accurately classify brain-metastatic disease progression versus regression. Future work will extend the input from 2D image slices to full 3D volumes, and include the category of no change. We believe that an approach such as our could ultimately provide a useful adjunct to RANO/RECIST assessment.